7th Korean Astrophysics Workshop: Dynamics of Disk Galaxies Oct.21- 24, 2013, Seoul National University ### Dynamics of the ISM in Galactic Spirals in "isolated" and "non-barred" systems Keiichi Wada Kagoshima University, Japan A review paper "Spiral Structures in Disk Galaxies": Dobbs & Baba (2014?) PASP related recent papers: Baba, KW, Saitoh (2012) KW, Baba, Saitoh (2011) Fujii, Baba, Saitoh, Makino, Kokubo, KW (2011) modeling MW => Baba, Saitoh, KW (2010) Baba, Asaki, Makino, Miyoshi, Saitoh, KW (2009) KW (2008) # Outline - 1.Conventional pictures of galactic shocks and a more realistic case in a fixed potential - 2. Stellar Spirals as structures in dynamic equilibrium - 3. ISM in non-steady stellar spirals ≠ galactic shock - 4. Observational test: "offset" between stellar and gas spirals ## Dynamics of cold gas and stellar spirals - * Cold gases collide near the stellar arms on the rotating frame - * Kpc scale radial motions - * Hard to define "life time of clouds" (=> Dobbs & Pringle) difference between steady & global density waves and non-steady, N-body spirals # Gas motion: Live vs. Rigid spiral Random or converging flows Regular flows typically seen in galactic shock Conventional galactic shock 15 #### If ISM is supersonic relative to #### new picture of galactic spiral #### Both ISM and spiral potential follow galactic rotation Spiral potential itself is time-dependent → This makes the bound-clouds unbound. No systematic "offset" is expected # Pattern speed of spiral: offset method (Egusa+2009) **Assumptions** based on the density wave hypothesis: - 1) spiral pattern is rigid - 2) gas rotates in pure circular orbits # Summary: new picture of multi-arm spirals in an isolated/non-barred galaxies ■ Stellar spirals = Dynamic equilibrium structures in a self-gravitating disk Key physics: non-linear epicycle motion+ comoving with galactic rotation (Baba, KW, Saitoh 2013) - Both stellar spirals & ISM move following galactic differential rotation (KW, Baba, Saitoh 2012) - \Rightarrow ISM falls into the spiral potential from both sides, forming dense regions (\Rightarrow GMCs) \Rightarrow The dense gas moves into the interarm region as the potential changes \Rightarrow entering other spirals \Rightarrow - Galactic spirals in isolated systems are NOT global, standing galactic shocks. We do not expect systematic offset between gas and stars (spirals).