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Outline

1.Conventional pictures of galactic shocks and a
more realistic case in a fixed potential

2. Stellar Spirals as structures in dynamic
equilibrium
3. ISM in non-steady stellar spirals # galactic shock

4. Observational test: “offset” between stellar and
gas spirals
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Galactic shock in a tight winding spiral potential
(Fujimoto 1968; Roberts 1969; and many papers in 70s and 80s)

shock ISM is compressed downstream
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Star formation is triggered
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2D/3D Spiral shocks are neither smooth nor stable

cf. the first 2D simulations of the galactic shocks (Johns&Nelson 1986)
Two-component, SPH Dobbs

Shetty & Ostriker 2006 Kim & Ostriker 2006
3D, MHD, self-graivty
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3D, selfgravity + cooling and heating in steady 2-arm spiral

evolve inhomogeneous quasi-steady arms
+ inter-arm substructures

Classic ‘galactic shocks’

Time Myr] Wada (2008)

Inhomogeneous arms are loosely associated
with the background spiral potential.

3D pure N-body simulations (Fujii et al.)
= each spiral is non—steady, short-lived

but splrals always eX|st in the dISk over 10 Gyrs
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All spiral modes are time-dependent




Baba, Wada,Saitoh (2013)

Swarming stars causes the non-steady spirals:
“epicyclic motion”, but with a kpc scale travel,

oscillation on angular momentum space

= guiding center moves (L, E are no longer constant) in the non-linear stage =
“swarm” of stars = non-steady spirals

3.575 Gyr Trot=11.01 FilelD=1816
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Spirals are wound (not “pattern’) = recurrently formed

Non-stationary: stretching/bifurcating/merging

Gas arms are associated with stellar arms with substructure




Amplitude of stars and gas at different radii on
their rotating frames

Gas clouds are associated with non-steady stellar arms,
without clear offset.
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On a local galactic galactic rotating frame,
Cold gas clouds have large (2-3 kpc) “epicycle” motions,
collide near the stellar spirals, forming massive associations.
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‘GMAS’ have strong shear motion. = source of turbulence?
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Dynamics of cold gas and stellar spirals

% Cold gases collide near the stellar arms on the rotating frame

* Kpc scale radial motions

* Hard to define “life time of clouds” (=> Dobbs & Pringle)
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difference between steady & global density waves
and non-steady, N-body spirals
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Each portion of spiral moves following the galactic rotation
= Not “global waves” with a constant pattern speed
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1 & Angular velocity of m= 4 spirals

—> High density regions of stars move
slower in the outer part

- The spiral arms are in fact wound!
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Essential difference between rigid, global density waves
vs. live’ spirals in a dynamical equilibrium

'Rotational velocity | Rotational velocity

gas gas

Spiral spiral
“co-rotation” is
everywhere!
radius ’ radius ’
Gas can be ‘supersonic’ Gas is ‘subsonic’ (random
for the spiral potential velocity ~ relative velocity

to the stellar potential).
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Gas motion: Live vs. Rigid spiral
LIVE (T = 1.000 Gyr) RIGID (T = 0.252 Gyr)
—> 15,0 km s~ Log Yoqq [em™?] —» 50.0 km s~ Log Tggq [em™?]
2 = 2
X [kpc] X [kpc]
Random or converging flows Regular flows typically seen in
galactic shock

Conventional galactic shock

If ISM is supersonic relative to
a stationary potential, a shock could be formed
¢z Ou 0P(z)

shock (M2 - 1) Esa_m - Oz

u A \
. supersonic

c. LT ___
subsonic

b (3;) Stellar potential

density I\




new picture of galactic spiral

Both ISM and spiral potential follow galactic rotation
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Spiral potential itself is time-dependent
- This makes the bound-clouds unbound.

No systematic “offset” is expected
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Pattern speed of spiral: offset method (Egusa+2009)

Assumptions based on the density wave hypothesis:
1) spiral pattern is rigid

2) gas rotates in pure circular orbits
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Summary: new picture of multi-arm spirals in an
isolated/non-barred galaxies

B Stellar spirals= Dynamic equilibrium structures in a self-
gravitating disk
Key physics: non-linear epicycle motion+ comoving with galactic
rotation (Baba, KW, Saitoh 2013)

M Both stellar spirals& ISM move following galactic

differential rotation (KW, Baba, Saitoh 2012)

= |SM falls into the spiral potential from both sides, forming
dense regions (= GMCs) = The dense gas moves into the inter-
arm region as the potential changes = entering other spirals =

B Galactic spirals in isolated systems are NOT global,
standing galactic shocks. We do not expect systematic
offset between gas and stars (spirals).




