7th Korean Astrophysics Workshop: Dynamics of Disk Galaxies Oct.21- 24, 2013, Seoul National University

Dynamics of the ISM in Galactic Spirals

in "isolated" and "non-barred" systems

Keiichi Wada

Kagoshima University, Japan

A review paper "Spiral Structures in Disk Galaxies": Dobbs & Baba (2014?) PASP

related recent papers:

Baba, KW, Saitoh (2012)

KW, Baba, Saitoh (2011)

Fujii, Baba, Saitoh, Makino, Kokubo, KW (2011)

modeling MW => Baba, Saitoh, KW (2010)

Baba, Asaki, Makino, Miyoshi, Saitoh, KW (2009)

KW (2008)

Outline

- 1.Conventional pictures of galactic shocks and a more realistic case in a fixed potential
- 2. Stellar Spirals as structures in dynamic equilibrium
- 3. ISM in non-steady stellar spirals ≠ galactic shock
- 4. Observational test: "offset" between stellar and gas spirals

Dynamics of cold gas and stellar spirals

- * Cold gases collide near the stellar arms on the rotating frame
- * Kpc scale radial motions
- * Hard to define "life time of clouds" (=> Dobbs & Pringle)

difference between steady & global density waves and non-steady, N-body spirals

Gas motion: Live vs. Rigid spiral

Random or converging flows

Regular flows typically seen in galactic shock

Conventional galactic shock

15

If ISM is supersonic relative to

new picture of galactic spiral

Both ISM and spiral potential follow galactic rotation

Spiral potential itself is time-dependent

→ This makes the bound-clouds unbound.

No systematic "offset" is expected

Pattern speed of spiral: offset method (Egusa+2009)

Assumptions based on the density wave hypothesis:

- 1) spiral pattern is rigid
- 2) gas rotates in pure circular orbits

Summary: new picture of multi-arm spirals in an isolated/non-barred galaxies

■ Stellar spirals = Dynamic equilibrium structures in a self-gravitating disk

Key physics: non-linear epicycle motion+ comoving with galactic rotation (Baba, KW, Saitoh 2013)

- Both stellar spirals & ISM move following galactic differential rotation (KW, Baba, Saitoh 2012)
- \Rightarrow ISM falls into the spiral potential from both sides, forming dense regions (\Rightarrow GMCs) \Rightarrow The dense gas moves into the interarm region as the potential changes \Rightarrow entering other spirals \Rightarrow
- Galactic spirals in isolated systems are NOT global, standing galactic shocks. We do not expect systematic offset between gas and stars (spirals).